Natural Gradient Descent for Training Stochastic Complex-Valued Neural Networks

نویسنده

  • Tohru Nitta
چکیده

In this paper, the natural gradient descent method for the multilayer stochastic complex-valued neural networks is considered, and the natural gradient is given for a single stochastic complex-valued neuron as an example. Since the space of the learnable parameters of stochastic complex-valued neural networks is not the Euclidean space but a curved manifold, the complex-valued natural gradient method is expected to exhibit excellent learning performance. Keywords—Neural network; Complex number; Learning; Singular point

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Handwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns

The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...

متن کامل

Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network

Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...

متن کامل

Tumor detection in colonoscopic images using hybrid methods for on-line neural network training

In this paper the effectiveness of a new Hybrid Evolutionary Algorithm in on-line Neural Network training for tumor detection is investigated. To this end, a Lamarck-inspired combination of Evolutionary Algorithms and Stochastic Gradient Descent is proposed. The Evolutionary Algorithm works on the termination point of the Stochastic Gradient Descent. Thus, the method consists in a Stochastic Gr...

متن کامل

Comparison of the Complex Valued and Real Valued Neural Networks Trained with Gradient Descent and Random Search Algorithms

Complex Valued Neural Network is one of the open topics in the machine learning society. In this paper we will try to go through the problems of the complex valued neural networks gradients computations by combining the global and local optimization algorithms. The outcome of the current research is the combined global-local algorithm for training the complex valued feed forward neural network ...

متن کامل

Qualitatively characterizing neural network optimization problems

Training neural networks involves solving large-scale non-convex optimization problems. This task has long been believed to be extremely difficult, with fear of local minima and other obstacles motivating a variety of schemes to improve optimization, such as unsupervised pretraining. However, modern neural networks are able to achieve negligible training error on complex tasks, using only direc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014